When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    For a list of modes of convergence, see Modes of convergence (annotated index) Each of the following objects is a special case of the types preceding it: ...

  3. Modes of convergence (annotated index) - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence...

    The purpose of this article is to serve as an annotated index of various modes of convergence and their logical relationships. For an expository article, see Modes of convergence. Simple logical relationships between different modes of convergence are indicated (e.g., if one implies another), formulaically rather than in prose for quick ...

  4. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    Loosely, with this mode of convergence, we increasingly expect to see the next outcome in a sequence of random experiments becoming better and better modeled by a given probability distribution. More precisely, the distribution of the associated random variable in the sequence becomes arbitrarily close to a specified fixed distribution.

  5. Convergence proof techniques - Wikipedia

    en.wikipedia.org/wiki/Convergence_proof_techniques

    Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.

  6. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).

  7. Convergence of measures - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_measures

    For (,) a measurable space, a sequence μ n is said to converge setwise to a limit μ if = ()for every set .. Typical arrow notations are and .. For example, as a consequence of the Riemann–Lebesgue lemma, the sequence μ n of measures on the interval [−1, 1] given by μ n (dx) = (1 + sin(nx))dx converges setwise to Lebesgue measure, but it does not converge in total variation.

  8. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    Large or infinite variance will make the convergence slower, but the LLN holds anyway. [17] Mutual independence of the random variables can be replaced by pairwise independence [18] or exchangeability [19] in both versions of the law. The difference between the strong and the weak version is concerned with the mode of convergence being asserted.

  9. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if