Search results
Results From The WOW.Com Content Network
In a topological abelian group, convergence of a series is defined as convergence of the sequence of partial sums. An important concept when considering series is unconditional convergence, which guarantees that the limit of the series is invariant under permutations of the summands.
That the series formed by calculating the expected value of the outcome's distance from a particular value may converge to 0; That the variance of the random variable describing the next event grows smaller and smaller. These other types of patterns that may arise are reflected in the different types of stochastic convergence that have been ...
The Riemann series theorem states that if a series converges conditionally, it is possible to rearrange the terms of the series in such a way that the series converges to any value, or even diverges. Agnew's theorem characterizes rearrangements that preserve convergence for all series.
The purpose of this article is to serve as an annotated index of various modes of convergence and their logical relationships. For an expository article, see Modes of convergence. Simple logical relationships between different modes of convergence are indicated (e.g., if one implies another), formulaically rather than in prose for quick ...
Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.
Unconditional convergence is often defined in an equivalent way: A series is unconditionally convergent if for every sequence () =, with {, +}, the series = converges. If X {\displaystyle X} is a Banach space , every absolutely convergent series is unconditionally convergent, but the converse implication does not hold in general.
The term uniform convergence was probably first used by Christoph Gudermann, in an 1838 paper on elliptic functions, where he employed the phrase "convergence in a uniform way" when the "mode of convergence" of a series = (,,) is independent of the variables and .
More sophisticated types of convergence of a series of functions can also be defined. In measure theory, for instance, a series of functions converges almost everywhere if it converges pointwise except on a set of measure zero. Other modes of convergence depend on a different metric space structure on the space of functions under