Ad
related to: electrostatics practice problems with answers for chemistry 221 pdf book
Search results
Results From The WOW.Com Content Network
Protein folding problem: Is it possible to predict the secondary, tertiary and quaternary structure of a polypeptide sequence based solely on the sequence and environmental information? Inverse protein-folding problem: Is it possible to design a polypeptide sequence which will adopt a given structure under certain environmental conditions?
Faraday's ice pail experiment is a simple electrostatics experiment performed in 1843 by British scientist Michael Faraday [1] [2] that demonstrates the effect of electrostatic induction on a conducting container. For a container, Faraday used a metal pail made to hold ice, which gave the experiment its name. [3]
Φ is the local electrostatic potential in V. In the special case of an uncharged atom, z i = 0, and so μ i = μ i . Electrochemical potential is important in biological processes that involve molecular diffusion across membranes, in electroanalytical chemistry, and industrial applications such as batteries and fuel cells.
Thomson's problem is related to the 7th of the eighteen unsolved mathematics problems proposed by the mathematician Steve Smale — "Distribution of points on the 2-sphere". [2] The main difference is that in Smale's problem the function to minimise is not the electrostatic potential 1 r i j {\displaystyle 1 \over r_{ij}} but a logarithmic ...
Therefore, the electrostatic field everywhere inside a conductive object is zero, and the electrostatic potential is constant. The electric field, E {\displaystyle \mathbf {E} } , in units of Newtons per Coulomb or volts per meter, is a vector field that can be defined everywhere, except at the location of point charges (where it diverges to ...
Electrostatic discharge while fueling with gasoline is a present danger at gas stations. [24] Fires have also been started at airports while refueling aircraft with kerosene. New grounding technologies, the use of conducting materials, and the addition of anti-static additives help to prevent or safely dissipate the buildup of static electricity.
D&H say that, due to the "mutual electrostatic forces between the ions", it is necessary to modify the Guldberg–Waage equation by replacing with , where is an overall activity coefficient, not a "special" activity coefficient (a separate activity coefficient associated with each species)—which is what is used in modern chemistry as of 2007.
Ewald summation, named after Paul Peter Ewald, is a method for computing long-range interactions (e.g. electrostatic interactions) in periodic systems.It was first developed as the method for calculating the electrostatic energies of ionic crystals, and is now commonly used for calculating long-range interactions in computational chemistry.