Search results
Results From The WOW.Com Content Network
Subscripts 1 and 2 refer to initial and final optical media respectively. These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:
Different kinds of camera lenses, including wide angle, telephoto and speciality. A camera lens (also known as photographic lens or photographic objective) is an optical lens or assembly of lenses (compound lens) used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically.
Prime lens - a photographic lens whose focal length is fixed, as opposed to a zoom lens, or that is the primary lens in a combination lens system. Zoom lenses - variable focal length lenses. Zoom lenses cover a range of focal lengths by utilising movable elements within the barrel of the lens assembly.
For a single lens surrounded by a medium of refractive index n = 1, the locations of the principal points H and H ′ with respect to the respective lens vertices are given by the formulas = ′ = (), where f is the focal length of the lens, d is its thickness, and r 1 and r 2 are the radii of curvature of its surfaces. Positive signs indicate ...
In optics, a conjugate plane or conjugate focal plane of a given plane P, is the plane P′ such that points on P are imaged on P′. [1] If an object is moved to the point occupied by its image, then the moved object's new image will appear at the point where the object originated. In other words, the object and its image are interchangeable.
The optical transfer function (OTF) of an optical system such as a camera, microscope, human eye, or projector is a scale-dependent description of their imaging contrast.
The ability of a lens to resolve detail is usually determined by the quality of the lens, but is ultimately limited by diffraction.Light coming from a point source in the object diffracts through the lens aperture such that it forms a diffraction pattern in the image, which has a central spot and surrounding bright rings, separated by dark nulls; this pattern is known as an Airy pattern, and ...
In microscopy, NA is important because it indicates the resolving power of a lens. The size of the finest detail that can be resolved (the resolution) is proportional to λ / 2NA , where λ is the wavelength of the light. A lens with a larger numerical aperture will be able to visualize finer details than a lens with a smaller numerical ...