Search results
Results From The WOW.Com Content Network
Conjectural history is a type of historiography isolated in the 1790s by Dugald Stewart, who termed it "theoretical or conjectural history," as prevalent in the historians and early social scientists of the Scottish Enlightenment. As Stewart saw it, such history makes space for speculation about causes of events, by postulating natural causes ...
Historical method is the collection of techniques and guidelines that historians use to research and write histories of the past. Secondary sources, primary sources and material evidence such as that derived from archaeology may all be drawn on, and the historian's skill lies in identifying these sources, evaluating their relative authority, and combining their testimony appropriately in order ...
No free lunch in search and optimization (computational complexity theory) No free lunch theorem (philosophy of mathematics) No-hair theorem ; No-trade theorem ; No wandering domain theorem (ergodic theory) Noether's theorem (Lie groups, calculus of variations, differential invariants, physics) Noether's second theorem (calculus of variations ...
As reformulated, it became the "paving conjecture" for Euclidean spaces, and then a question on random polynomials, in which latter form it was solved affirmatively. 2015: Jean Bourgain, Ciprian Demeter, and Larry Guth: Main conjecture in Vinogradov's mean-value theorem: analytic number theory: Bourgain–Demeter–Guth theorem, ⇐ decoupling ...
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. [1] [2] [3] Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to ...
In proof by exhaustion, the conclusion is established by dividing it into a finite number of cases and proving each one separately. The number of cases sometimes can become very large. For example, the first proof of the four color theorem was a proof by exhaustion with 1,936 cases. This proof was controversial because the majority of the cases ...
Manin–Mumford conjecture; Marden tameness conjecture; Mariño–Vafa conjecture; Milin conjecture; Milnor conjecture (K-theory) Milnor conjecture (knot theory) Modularity theorem; Mordell conjecture; Mordell–Lang conjecture; Mordell's conjecture; Morita conjectures
A well-known example is the Taniyama–Shimura conjecture, now the modularity theorem, which proposed that each elliptic curve over the rational numbers can be translated into a modular form (in such a way as to preserve the associated L-function). There are difficulties in identifying this with an isomorphism, in any strict sense of the word.