Ads
related to: trinomial factoring problemswyzant.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
In elementary algebra, factoring a polynomial reduces the problem of finding its roots to finding the roots of the factors. Polynomials with coefficients in the integers or in a field possess the unique factorization property , a version of the fundamental theorem of arithmetic with prime numbers replaced by irreducible polynomials .
Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields, a fundamental step is a factorization of a polynomial over a finite field.
For instance, the polynomial x 2 + 3x + 2 is an example of this type of trinomial with n = 1. The solution a 1 = −2 and a 2 = −1 of the above system gives the trinomial factorization: x 2 + 3x + 2 = (x + a 1)(x + a 2) = (x + 2)(x + 1). The same result can be provided by Ruffini's rule, but with a more complex and time-consuming process.
Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O ( n 2 ) operations in F q using "classical" arithmetic, or in O ( n log( n ) log(log( n )) ) operations in F q using "fast ...
In the second step, the distributive law is used to simplify each of the two terms. Note that this process involves a total of three applications of the distributive property. In contrast to the FOIL method, the method using distributivity can be applied easily to products with more terms such as trinomials and higher.
Formation of the polynomial ring, together with forming factor rings by factoring out ideals, are important tools for constructing new rings out of known ones. For instance, the ring (in fact field) of complex numbers, which can be constructed from the polynomial ring R [ x ] over the real numbers by factoring out the ideal of multiples of the ...