Search results
Results From The WOW.Com Content Network
A calorimeter constant (denoted C cal) is a constant that quantifies the heat capacity of a calorimeter. [1] [2] It may be calculated by applying a known amount of heat to the calorimeter and measuring the calorimeter's corresponding change in temperature.
The energy factor metric only applies to residential water heaters, which are currently defined by fuel, type, and input capacity. [5] Generally, the EF number represents the thermal efficiency of the water heater as a percentage, since it is an average of the ratio of the theoretical heat required to raise the temperature of water drawn to the amount of energy actually consumed by the water ...
However, certain substances, water for example, contain unique angular structures at the molecular level. As such, when these substances reach temperatures just above their freezing point, they begin to expand, since the angle of the bonds prevent the molecules from tightly fitting together, resulting in more empty space between the molecules ...
The collection includes videos, each just a few minutes long, for all 118 known elements with a video for each element, as well as many additional supplemental chemistry videos. The 118 element videos and introduction videos were all shot unscripted in June and July 2008. [5] Since the initial videos were completed in 2008 the team has been ...
The temperature change in the water is then accurately measured with a thermometer. This reading, along with a bomb factor (which is dependent on the heat capacity of the metal bomb parts), is used to calculate the energy given out by the sample burn. A small correction is made to account for the electrical energy input, the burning fuse, and ...
In water moderated nuclear reactors, the bulk of reactivity changes with respect to temperature are brought about by changes in the temperature of the water. However each element of the core has a specific temperature coefficient of reactivity (e.g. the fuel or cladding).
Graph of temperature of phases of water heated from −100 °C to 200 °C – the dashed line example shows that melting and heating 1 kg of ice at −50 °C to water at 40 °C needs 600 kJ The specific heat capacities of gases can be measured at constant volume, by enclosing the sample in a rigid container.
Since the cycle's working fluid, water, changes from liquid to vapor and back during the cycle, their efficiencies depend on the thermodynamic properties of water. The thermal efficiency of modern steam turbine plants with reheat cycles can reach 47%, and in combined cycle plants, in which a steam turbine is powered by exhaust heat from a gas ...