Search results
Results From The WOW.Com Content Network
Another alternative to RLHF called Direct Preference Optimization (DPO) has been proposed to learn human preferences. Like RLHF, it has been applied to align pre-trained large language models using human-generated preference data. Unlike RLHF, however, which first trains a separate intermediate model to understand what good outcomes look like ...
AI and UI both concern preferences on lotteries and are explained above. PI concerns preferences on sure outcomes and is explained in the article on ordinal utility. Their implication order is as follows: AI ⇒ UI ⇒ PI. AI is a symmetric relation (if attribute 1 is AI of attribute 2 then attribute 2 is AI of attribute 1), while UI and PI are ...
Preference learning is a subfield of machine learning that focuses on modeling and predicting preferences based on observed preference information. [1] Preference learning typically involves supervised learning using datasets of pairwise preference comparisons, rankings, or other preference information.
In this example a company should prefer product B's risk and payoffs under realistic risk preference coefficients. Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making (both in daily life and in settings such as business, government and medicine).
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
An ideal action would have a positive preference flow equal to 1 and a negative preference flow equal to 0. The two preference flows induce two generally different complete rankings on the set of actions. The first one is obtained by ranking the actions according to the decreasing values of their positive flow scores.
The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria decision analysis method, which was originally developed by Ching-Lai Hwang and Yoon in 1981 [1] with further developments by Yoon in 1987, [2] and Hwang, Lai and Liu in 1993. [3]
Direct preference optimization, a technique for aligning AI models with human preferences; Double pushout graph rewriting, in computer science; Other.