When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    Another alternative to RLHF called Direct Preference Optimization (DPO) has been proposed to learn human preferences. Like RLHF, it has been applied to align pre-trained large language models using human-generated preference data. Unlike RLHF, however, which first trains a separate intermediate model to understand what good outcomes look like ...

  3. DPO - Wikipedia

    en.wikipedia.org/wiki/DPO

    Direct preference optimization, a technique for aligning AI models with human preferences; Double pushout graph rewriting, in computer science; Other.

  4. Preference learning - Wikipedia

    en.wikipedia.org/wiki/Preference_learning

    Preference learning is a subfield of machine learning that focuses on modeling and predicting preferences based on observed preference information. [1] Preference learning typically involves supervised learning using datasets of pairwise preference comparisons, rankings, or other preference information.

  5. Multi-objective optimization - Wikipedia

    en.wikipedia.org/wiki/Multi-objective_optimization

    Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.

  6. TOPSIS - Wikipedia

    en.wikipedia.org/wiki/TOPSIS

    The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria decision analysis method, which was originally developed by Ching-Lai Hwang and Yoon in 1981 [1] with further developments by Yoon in 1987, [2] and Hwang, Lai and Liu in 1993. [3]

  7. Proximal policy optimization - Wikipedia

    en.wikipedia.org/wiki/Proximal_Policy_Optimization

    Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent. Specifically, it is a policy gradient method , often used for deep RL when the policy network is very large.

  8. Leximin order - Wikipedia

    en.wikipedia.org/wiki/Leximin_order

    The leximin-order is also used for Multi-objective optimization, [6] for example, in optimal resource allocation, [7] location problems, [8] and matrix games. [ 9 ] It is also studied in the context of fuzzy constraint solving problems .

  9. Von Neumann–Morgenstern utility theorem - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann–Morgenstern...

    That is, they proved that an agent is (VNM-)rational if and only if there exists a real-valued function u defined by possible outcomes such that every preference of the agent is characterized by maximizing the expected value of u, which can then be defined as the agent's VNM-utility (it is unique up to affine transformations i.e. adding a ...