Search results
Results From The WOW.Com Content Network
Rarefaction is the reduction of an item's density, the opposite of compression. [1] Like compression, which can travel in waves (sound waves, for instance), rarefaction waves also exist in nature. A common rarefaction wave is the area of low relative pressure following a shock wave (see picture).
In physics, magnetosonic waves, also known as magnetoacoustic waves, are low-frequency compressive waves driven by mutual interaction between an electrically conducting fluid and a magnetic field. They are associated with compression and rarefaction of both the fluid and the magnetic field, as well as with an effective tension that acts to ...
"Longitudinal waves" and "transverse waves" have been abbreviated by some authors as "L-waves" and "T-waves", respectively, for their own convenience. [1] While these two abbreviations have specific meanings in seismology (L-wave for Love wave [2] or long wave [3]) and electrocardiography (see T wave), some authors chose to use "ℓ-waves" (lowercase 'L') and "t-waves" instead, although they ...
The inverse process of compression is called decompression, dilation, or expansion, in which the object enlarges or increases in volume. In a mechanical wave, which is longitudinal, the medium is displaced in the wave's direction, resulting in areas of compression and rarefaction.
It consists of multiple compressions and rarefactions. The rarefaction is the farthest distance apart in the longitudinal wave and the compression is the closest distance together. The speed of the longitudinal wave is increased in higher index of refraction, due to the closer proximity of the atoms in the medium that is being compressed.
In a gas or liquid, sound consists of compression waves. In solids, waves propagate as two different types. A longitudinal wave is associated with compression and decompression in the direction of travel, and is the same process in gases and liquids, with an analogous compression-type wave in solids. Only compression waves are supported in ...
Liquid oxygen has a clear cyan color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. [2] Liquid oxygen has a density of 1.141 kg/L (1.141 g/ml), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (−218.79 °C; −361.82 °F) and a boiling point of 90.19 K (−182.96 °C; −297.33 °F) at 1 bar (14.5 psi).
Diagram showing displacement of the Sun's image at sunrise and sunset Comparison of inferior and superior mirages due to differing air refractive indices, n. Atmospheric refraction is the deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere due to the variation in air density as a function of height. [1]