Search results
Results From The WOW.Com Content Network
For loop illustration, from i=0 to i=2, resulting in data1=200. A for-loop statement is available in most imperative programming languages. Even ignoring minor differences in syntax, there are many differences in how these statements work and the level of expressiveness they support.
For example, a ranged loop like for x = 1 to 10 can be implemented as iteration through a generator, as in Python's for x in range(1, 10). Further, break can be implemented as sending finish to the generator and then using continue in the loop.
Go's foreach loop can be used to loop over an array, slice, string, map, ... was introduced in Java Development Kit (JDK) 1.5.0. ... let mut numbers = vec! [1, 2, 3]; ...
Numeric literals in Python are of the normal sort, e.g. 0, -1, 3.4, 3.5e-8. Python has arbitrary-length integers and automatically increases their storage size as necessary. Prior to Python 3, there were two kinds of integral numbers: traditional fixed size integers and "long" integers of arbitrary size.
Guido van Rossum began working on Python in the late 1980s as a successor to the ABC programming language and first released it in 1991 as Python 0.9.0. [36] Python 2.0 was released in 2000. Python 3.0, released in 2008, was a major revision not completely backward-compatible with earlier versions. Python 2.7.18, released in 2020, was the last ...
The following list contains syntax examples of how to determine the dimensions (index of the first element, the last element or the size in elements).. Some languages index from zero.
In many programming languages, only integers can be reliably used in a count-controlled loop. Floating-point numbers are represented imprecisely due to hardware constraints, so a loop such as. for X := 0.1 step 0.1 to 1.0 do. might be repeated 9 or 10 times, depending on rounding errors and/or the hardware and/or the compiler version.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.