Search results
Results From The WOW.Com Content Network
In the context of this article, "faster-than-light" means the transmission of information or matter faster than c, a constant equal to the speed of light in vacuum, which is 299,792,458 m/s (by definition of the metre) [3] or about 186,282.397 miles per second. This is not quite the same as traveling faster than light, since:
The first hypothesis regarding faster-than-light particles is sometimes attributed to physicist Arnold Sommerfeld, who, in 1904, named them "meta-particles". [7] [8] The possibility of existence of faster-than-light particles was also proposed by Lev Yakovlevich Shtrum in 1923. [9]
The speed of light is the upper limit for the speeds of objects with positive rest mass, and individual photons cannot travel faster than the speed of light. [39] This is experimentally established in many tests of relativistic energy and momentum .
With this modified setup, it can be demonstrated that even signals only slightly faster than the speed of light will result in causality violation. [44] Therefore, if causality is to be preserved, one of the consequences of special relativity is that no information signal or material object can travel faster than light in vacuum.
In astronomy, superluminal motion is the apparently faster-than-light motion seen in some radio galaxies, BL Lac objects, quasars, blazars and recently also in some galactic sources called microquasars. Bursts of energy moving out along the relativistic jets emitted from these objects can have a proper motion that appears greater than the speed ...
The limitations of phase velocity beyond the speed of light later led him to develop his Dirac communicator. Larry Niven used hyperwave in his Known Space series as the term for a faster-than-light method of communication. Unlike the hyperdrive that moved ships at a finite superluminal speed, hyperwave was essentially instantaneous.
Kopeikin and Fomalont concluded that the speed of gravity is between 0.8 and 1.2 times the speed of light, which would be fully consistent with the theoretical prediction of general relativity that the speed of gravity is exactly the same as the speed of light. [23] Several physicists, including Clifford M.
The temporal distribution of the proton extractions was statistically compared with approximately 16000 neutrino events. OPERA measured an early neutrinos arrival of approximately 60 nanoseconds, as compared to the expected arrival at the speed of light, thus indicating a neutrino speed faster than that of light.