Ads
related to: physics differential equation examples with answers free
Search results
Results From The WOW.Com Content Network
Differential equations play a prominent role in many scientific areas: mathematics, physics, engineering, chemistry, biology, medicine, economics, etc. This list presents differential equations that have received specific names, area by area.
Examples of differential equations; Autonomous system (mathematics) Picard–Lindelöf theorem; Peano existence theorem; Carathéodory existence theorem; Numerical ordinary differential equations; Bendixson–Dulac theorem; Gradient conjecture; Recurrence plot; Limit cycle; Initial value problem; Clairaut's equation; Singular solution ...
The order of the differential equation is the highest order of derivative of the unknown function that appears in the differential equation. For example, an equation containing only first-order derivatives is a first-order differential equation, an equation containing the second-order derivative is a second-order differential equation, and so on.
An example of a nonlinear delay differential equation; applications in number theory, distribution of primes, and control theory [ 5 ] [ 6 ] [ 7 ] Chrystal's equation
These include differential equations, manifolds, Lie groups, and ergodic theory. [4] This article gives a summary of the most important of these. This article lists equations from Newtonian mechanics, see analytical mechanics for the more general formulation of classical mechanics (which includes Lagrangian and Hamiltonian mechanics).
Given a simply connected and open subset D of and two functions I and J which are continuous on D, an implicit first-order ordinary differential equation of the form (,) + (,) =,is called an exact differential equation if there exists a continuously differentiable function F, called the potential function, [1] [2] so that
If one can evaluate the two integrals, one can find a solution to the differential equation. Observe that this process effectively allows us to treat the derivative as a fraction which can be separated. This allows us to solve separable differential equations more conveniently, as demonstrated in the example below.
Name Dim Equation Applications Landau–Lifshitz model: 1+n = + Magnetic field in solids Lin–Tsien equation: 1+2 + = Liouville equation: any + = Liouville–Bratu–Gelfand equation