When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Surface integral - Wikipedia

    en.wikipedia.org/wiki/Surface_integral

    Calculus. In mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analogue of the line integral. Given a surface, one may integrate over this surface a scalar field (that is, a function of position which returns a ...

  3. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in (the real-number plane) are called double integrals, and integrals of a function of three variables over a region ...

  4. Lebedev quadrature - Wikipedia

    en.wikipedia.org/wiki/Lebedev_quadrature

    Lebedev quadrature. In numerical analysis, Lebedev quadrature, named after Vyacheslav Ivanovich Lebedev, is an approximation to the surface integral of a function over a three-dimensional sphere. The grid is constructed so to have octahedral rotation and inversion symmetry. The number and location of the grid points together with a ...

  5. Green's theorem - Wikipedia

    en.wikipedia.org/wiki/Green's_theorem

    In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus.

  6. Volume integral - Wikipedia

    en.wikipedia.org/wiki/Volume_integral

    e. In mathematics (particularly multivariable calculus), a volume integral (∭) is an integral over a 3-dimensional domain; that is, it is a special case of multiple integrals. Volume integrals are especially important in physics for many applications, for example, to calculate flux densities, or to calculate mass from a corresponding density ...

  7. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    An animation of the figure-8 solution to the three-body problem over a single period T ≃ 6.3259 [13] 20 examples of periodic solutions to the three-body problem In the 1970s, Michel Hénon and Roger A. Broucke each found a set of solutions that form part of the same family of solutions: the Broucke–Hénon–Hadjidemetriou family.

  8. Slater integrals - Wikipedia

    en.wikipedia.org/wiki/Slater_integrals

    Slater integrals. In mathematics and mathematical physics, Slater integrals are certain integrals of products of three spherical harmonics. They occur naturally when applying an orthonormal basis of functions on the unit sphere that transform in a particular way under rotations in three dimensions. Such integrals are particularly useful when ...

  9. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    A volume integral is an integral over a three-dimensional domain or region. When the integrand is trivial (unity), the volume integral is simply the region's volume . [ 14 ] [ 1 ] It can also mean a triple integral within a region D in R 3 of a function f ( x , y , z ) , {\displaystyle f(x,y,z),} and is usually written as: