Search results
Results From The WOW.Com Content Network
A simple fraction (also known as a common fraction or vulgar fraction) [n 1] is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 / 2 , − 8 / 5 , −8 / 5 , and 8 / −5 .
The unit fractions are the rational numbers that can be written in the form , where can be any positive natural number. They are thus the multiplicative inverses of the positive integers. When something is divided into n {\displaystyle n} equal parts, each part is a 1 / n {\displaystyle 1/n} fraction of the whole.
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
A real number can be expressed by a finite number of decimal digits only if it is rational and its fractional part has a denominator whose prime factors are 2 or 5 or both, because these are the prime factors of 10, the base of the decimal system. Thus, for example, one half is 0.5, one fifth is 0.2, one-tenth is 0.1, and one fiftieth is 0.02.
In the sexagesimal system, any fraction in which the denominator is a regular number (having only 2, 3, and 5 in its prime factorization) may be expressed exactly. [26] Shown here are all fractions of this type in which the denominator is less than or equal to 60:
Decimals are also to be used instead of fractions, as in "3.5 percent of the gain" and not "3 + 1 ⁄ 2 percent of the gain". However the titles of bonds issued by governments and other issuers use the fractional form, e.g. "3 + 1 ⁄ 2 % Unsecured Loan Stock 2032 Series 2".
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1.
In mathematics, the Farey sequence of order n is the sequence of completely reduced fractions, either between 0 and 1, or without this restriction, [a] which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size.