When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ordination (statistics) - Wikipedia

    en.wikipedia.org/wiki/Ordination_(statistics)

    Ordination or gradient analysis, in multivariate analysis, is a method complementary to data clustering, and used mainly in exploratory data analysis (rather than in hypothesis testing). In contrast to cluster analysis, ordination orders quantities in a (usually lower-dimensional) latent space. In the ordination space, quantities that are near ...

  3. Canonical correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Canonical_correspondence...

    In multivariate analysis, canonical correspondence analysis (CCA) is an ordination technique that determines axes from the response data as a unimodal combination of measured predictors. CCA is commonly used in ecology in order to extract gradients that drive the composition of ecological communities.

  4. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...

  5. Analyse-it - Wikipedia

    en.wikipedia.org/wiki/Analyse-it

    Analyse-it is a statistical analysis add-in for Microsoft Excel. Analyse-it is the successor to Astute, developed in 1992 for Excel 4 and the first statistical analysis add-in for Microsoft Excel. Analyse-it is the successor to Astute, developed in 1992 for Excel 4 and the first statistical analysis add-in for Microsoft Excel.

  6. Descent direction - Wikipedia

    en.wikipedia.org/wiki/Descent_direction

    Numerous methods exist to compute descent directions, all with differing merits, such as gradient descent or the conjugate gradient method. More generally, if P {\displaystyle P} is a positive definite matrix, then p k = − P ∇ f ( x k ) {\displaystyle p_{k}=-P\nabla f(x_{k})} is a descent direction at x k {\displaystyle x_{k}} . [ 1 ]

  7. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  8. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    The optimized gradient method (OGM) [26] reduces that constant by a factor of two and is an optimal first-order method for large-scale problems. [27] For constrained or non-smooth problems, Nesterov's FGM is called the fast proximal gradient method (FPGM), an acceleration of the proximal gradient method.

  9. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    The primary application of the Levenberg–Marquardt algorithm is in the least-squares curve fitting problem: given a set of empirical pairs (,) of independent and dependent variables, find the parameters ⁠ ⁠ of the model curve (,) so that the sum of the squares of the deviations () is minimized: