Ad
related to: applications of topological insulators in physics
Search results
Results From The WOW.Com Content Network
The most promising applications of topological insulators are spintronic devices and dissipationless transistors for quantum computers based on the quantum Hall effect [14] and quantum anomalous Hall effect. [62] In addition, topological insulator materials have also found practical applications in advanced magnetoelectronic and optoelectronic ...
The topological insulators and superconductors are classified here in ten symmetry classes (A,AII,AI,BDI,D,DIII,AII,CII,C,CI) named after Altland–Zirnbauer classification, defined here by the properties of the system with respect to three operators: the time-reversal operator , charge conjugation and chiral symmetry . The symmetry classes are ...
In physics, topological order [1] is a kind of order in the zero-temperature phase of matter (also known as quantum matter). Macroscopically, topological order is defined and described by robust ground state degeneracy [2] and quantized non-abelian geometric phases of degenerate ground states. [1]
Bismuth subhalides, such as Bi 4 Br 4 and β-Bi 4 I 4, have been recently reported as topological insulators. [2] [3] Topological insulators have caught attention of physical inorganic chemists as well as condensed matter physicists due to the unique physicochemical properties emerging upon transition from bulk to surface states. [5]
Topological order in solid state systems has been studied in condensed matter physics since the discovery of integer quantum Hall effect.But topological matter attracted considerable interest from the physics community after the proposals for possible observation of symmetry-protected topological phases (or the so-called topological insulators) in graphene, [3] and experimental observation of ...
In contrast with a non-magnetic topological insulator, a magnetic topological insulator can have naturally gapped surface states as long as the quantizing symmetry is broken at the surface. These gapped surfaces exhibit a topologically protected half-quantized surface anomalous Hall conductivity ( e 2 / 2 h {\displaystyle e^{2}/2h ...
Two-dimensional topological insulators (also known as the quantum spin Hall insulators) with one-dimensional helical edge states were predicted in 2006 by Bernevig, Hughes and Zhang to occur in quantum wells (very thin layers) of mercury telluride sandwiched between cadmium telluride, [7] and were observed in 2007.
The integer here is equal to the Chern number which arises out of topological properties of the material band structure. These effects are observed in systems called quantum anomalous Hall insulators (also called Chern insulators). [1] The effect was observed experimentally for the first time in 2013 by a team led by Xue Qikun at Tsinghua ...