Search results
Results From The WOW.Com Content Network
Can use Theano, Tensorflow or PlaidML as backends Yes No Yes Yes [20] Yes Yes No [21] Yes [22] Yes MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks: 1992 Proprietary: No Linux, macOS, Windows: C, C++, Java, MATLAB: MATLAB: No No Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder [23] No Yes [24 ...
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3]
The initial CUDA SDK was made public on 15 February 2007, for Microsoft Windows and Linux. Mac OS X support was later added in version 2.0, [18] which supersedes the beta released February 14, 2008. [19] CUDA works with all Nvidia GPUs from the G8x series onwards, including GeForce, Quadro and the Tesla line. CUDA is compatible with most ...
For example, TensorFlow Recommenders and TensorFlow Graphics are libraries for their respective functionalities in recommendation systems and graphics, TensorFlow Federated provides a framework for decentralized data, and TensorFlow Cloud allows users to directly interact with Google Cloud to integrate their local code to Google Cloud. [68]
Project Coriander: Conversion CUDA to OpenCL 1.2 with CUDA-on-CL [123] [124] Lightweight Java Game Library (LWJGL) contains low-lag Java bindings for OpenCL Miscellaneous
The Nvidia CUDA Compiler (NVCC) translates code written in CUDA, a C++-like language, into PTX instructions (an assembly language), and the graphics driver contains a compiler which translates PTX instructions into executable binary code, [2] which can run on the processing cores of Nvidia graphics processing units (GPUs).
Lustre, TensorFlow, Apache Flink: Functional: Message passing Task Concurrent Haskell, Concurrent ML: LogP machine: Synchronous message passing Not specified None Parallel random access machine: Shared memory Data Cilk, CUDA, OpenMP, Threading Building Blocks, XMTC: SPMD PGAS: Partitioned global address space Data Fortran 2008, Unified Parallel ...
PyTorch Tensors are similar to NumPy Arrays, but can also be operated on a CUDA-capable NVIDIA GPU. PyTorch has also been developing support for other GPU platforms, for example, AMD's ROCm [27] and Apple's Metal Framework. [28] PyTorch supports various sub-types of Tensors. [29]