Search results
Results From The WOW.Com Content Network
The top wire carries a current I 2 through the magnetic field B 1, so (by the Lorentz force) the wire experiences a force F 12. (Not shown is the simultaneous process where the top wire makes a magnetic field which results in a force on the bottom wire.) In magnetostatics, the force of attraction or repulsion between two current-carrying wires ...
The magnetic pole model assumes that the magnetic forces between magnets are due to magnetic charges near the poles. This model works even close to the magnet when the magnetic field becomes more complicated, and more dependent on the detailed shape and magnetization of the magnet than just the magnetic dipole contribution.
The current to be measured is passed in series through two coils of wire, one of which is attached to one arm of a sensitive balance. The magnetic force between the two coils is measured by the amount of weight needed on the other arm of the balance to keep it in equilibrium. This is used to calculate the numerical value of the current.
The magnetic force component of the Lorentz force manifests itself as the force that acts on a current-carrying wire in a magnetic field. In that context, it is also called the Laplace force . The Lorentz force is a force exerted by the electromagnetic field on the charged particle, that is, it is the rate at which linear momentum is ...
The force on a current carrying wire is similar to that of a moving charge as expected since a current carrying wire is a collection of moving charges. A current-carrying wire feels a force in the presence of a magnetic field. The Lorentz force on a macroscopic current is often referred to as the Laplace force.
This sparked a great deal of research into the relation between electricity and magnetism. André-Marie Ampère investigated the magnetic force between two current-carrying wires, discovering Ampère's force law. In the 1850s Scottish mathematical physicist James Clerk Maxwell generalized these results and others into a single mathematical law.
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.
The magnetic Lorentz force v × B drives a current along the conducting radius to the conducting rim, and from there the circuit completes through the lower brush and the axle supporting the disc. This device generates an emf and a current, although the shape of the "circuit" is constant and thus the flux through the circuit does not change ...