Search results
Results From The WOW.Com Content Network
The Gaussian function has a 1/e 2 diameter (2w as used in the text) about 1.7 times the FWHM.. At a position z along the beam (measured from the focus), the spot size parameter w is given by a hyperbolic relation: [1] = + (), where [1] = is called the Rayleigh range as further discussed below, and is the refractive index of the medium.
In optics, the complex beam parameter is a complex number that specifies the properties of a Gaussian beam at a particular point z along the axis of the beam. It is usually denoted by q . It can be calculated from the beam's vacuum wavelength λ 0 , the radius of curvature R of the phase front , the index of refraction n ( n =1 for air), and ...
If we have a Gaussian beam of wavelength , radius of curvature R (positive for diverging, negative for converging), beam spot size w and refractive index n, it is possible to define a complex beam parameter q by: [8] =.
Gaussian beam width () as a function of the axial distance .: beam waist; : confocal parameter; : Rayleigh length; : total angular spread In optics and especially laser science, the Rayleigh length or Rayleigh range, , is the distance along the propagation direction of a beam from the waist to the place where the area of the cross section is doubled. [1]
In laser science, the parameter M 2, also known as the beam propagation ratio or beam quality factor is a measure of laser beam quality. It represents the degree of variation of a beam from an ideal Gaussian beam. [1] It is calculated from the ratio of the beam parameter product (BPP) of the beam to that of a Gaussian beam with the same wavelength.
For a Gaussian beam, no simple upper integration limits exist because it theoretically extends to infinity. At r >> R, a Gaussian beam and a top-hat beam of the same R and S 0 have comparable convolution results. Therefore, r ≤ r max − R can be used approximately for Gaussian beams as well.
If the beam is distributed in phase space with a Gaussian distribution, the emittance of the beam may be specified in terms of the root mean square value of and the fraction of the beam to be included in the emittance. The equation for the emittance of a Gaussian beam is: [1]: 83
For example, if the heights of two lines are found to be h 1 and h 2, c 1 = h 1 / ε 1 and c 2 = h 2 / ε 2. [14] Parameters of the line shape are unknown. The intensity of each component is a function of at least 3 parameters, position, height and half-width. In addition one or both of the line shape function and baseline function may not be ...