When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian beam - Wikipedia

    en.wikipedia.org/wiki/Gaussian_beam

    The Gaussian function has a 1/e 2 diameter (2w as used in the text) about 1.7 times the FWHM.. At a position z along the beam (measured from the focus), the spot size parameter w is given by a hyperbolic relation: [1] = + (), where [1] = is called the Rayleigh range as further discussed below, and is the refractive index of the medium.

  3. Complex beam parameter - Wikipedia

    en.wikipedia.org/wiki/Complex_beam_parameter

    In optics, the complex beam parameter is a complex number that specifies the properties of a Gaussian beam at a particular point z along the axis of the beam. It is usually denoted by q . It can be calculated from the beam's vacuum wavelength λ 0 , the radius of curvature R of the phase front , the index of refraction n ( n =1 for air), and ...

  4. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    The Gaussian curvature is the product of the two principal curvatures Κ = κ 1 κ 2. The sign of the Gaussian curvature can be used to characterise the surface. If both principal curvatures are of the same sign: κ 1 κ 2 > 0, then the Gaussian curvature is positive and the surface is said to have an elliptic point. At such points, the surface ...

  5. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    If we have a Gaussian beam of wavelength , radius of curvature R (positive for diverging, negative for converging), beam spot size w and refractive index n, it is possible to define a complex beam parameter q by: [8] =.

  6. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The Gaussian curvature of the surface is then given by the second order deviation of the metric at the point from the Euclidean metric. In particular the Gaussian curvature is an invariant of the metric, Gauss's celebrated Theorema Egregium. A convenient way to understand the curvature comes from an ordinary differential equation, first ...

  7. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Consequently, Gaussian functions are also associated with the vacuum state in quantum field theory. Gaussian beams are used in optical systems, microwave systems and lasers. In scale space representation, Gaussian functions are used as smoothing kernels for generating multi-scale representations in computer vision and image processing.

  8. Rayleigh length - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_length

    Gaussian beam width () as a function of the axial distance .: beam waist; : confocal parameter; : Rayleigh length; : total angular spread In optics and especially laser science, the Rayleigh length or Rayleigh range, , is the distance along the propagation direction of a beam from the waist to the place where the area of the cross section is doubled. [1]

  9. Theorema Egregium - Wikipedia

    en.wikipedia.org/wiki/Theorema_egregium

    Thus the Gaussian curvature is an intrinsic invariant of a surface. Gauss presented the theorem in this manner (translated from Latin): Thus the formula of the preceding article leads itself to the remarkable Theorem. If a curved surface is developed upon any other surface whatever, the measure of curvature in each point remains unchanged.