When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    Vector addition is represented with the plus sign used as an operator between two vectors. The sum of two vectors u and v would be represented as: u + v {\displaystyle \mathbf {u} +\mathbf {v} } Scalar multiplication

  3. Vector multiplication - Wikipedia

    en.wikipedia.org/wiki/Vector_multiplication

    In mathematics, vector multiplication may refer to one of several operations between two (or more) vectors. It may concern any of the following articles: Dot product – also known as the "scalar product", a binary operation that takes two vectors and returns a scalar quantity. The dot product of two vectors can be defined as the product of the ...

  4. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    In this context, the elements of V are commonly called vectors, and the elements of F are called scalars. [2] The binary operation, called vector addition or simply addition assigns to any two vectors v and w in V a third vector in V which is commonly written as v + w, and called the sum of these two vectors.

  5. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    It is common to call these tuples vectors, even in contexts where vector-space operations do not apply. More generally, when some data can be represented naturally by vectors, they are often called vectors even when addition and scalar multiplication of vectors are not valid operations on these data. [disputed – discuss] Here are some examples.

  6. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The dot product of two unit vectors behaves just oppositely: it is zero when the unit vectors are perpendicular and 1 if the unit vectors are parallel. Unit vectors enable two convenient identities: the dot product of two unit vectors yields the cosine (which may be positive or negative) of the angle between the two unit vectors.

  7. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  8. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    The addition of two vectors a and b. This addition method is sometimes called the parallelogram rule because a and b form the sides of a parallelogram and a + b is one of the diagonals. If a and b are bound vectors that have the same base point, this point will also be the base point of a + b.

  9. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.