Search results
Results From The WOW.Com Content Network
In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.
The Simson line LN (red) of the triangle ABC with respect to point P on the circumcircle. In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. [1] The line through these points is the Simson line of P, named for Robert Simson. [2]
The tangential triangle of a reference triangle (other than a right triangle) is the triangle whose sides are on the tangent lines to the reference triangle's circumcircle at its vertices. [ 64 ] As mentioned above, every triangle has a unique circumcircle, a circle passing through all three vertices, whose center is the intersection of the ...
The most basic property of the Reuleaux triangle is that it has constant width, meaning that for every pair of parallel supporting lines (two lines of the same slope that both touch the shape without crossing through it) the two lines have the same Euclidean distance from each other, regardless of the orientation of these lines. [9]
Given any line l, let P, Q, R be the feet of perpendiculars from the vertices A, B, C of triangle ABC to l. The lines through P. Q, R perpendicular respectively to the sides BC, CA, AB are concurrent and the point of concurrence is the orthopole of the line l with respect to the triangle ABC. In modern triangle geometry, there is a large body ...
The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle. The triangle formed by the three parallel lines through the three midpoints of sides of a triangle is called its medial triangle.
Each passes through the corresponding excenter of the triangle, which is the center of similitude for the two circles. Each Soddy line also passes through an analog of the Gergonne point and the Eppstein points. The four Soddy lines concur at the de Longchamps point, the reflection of the orthocenter of the triangle about the circumcenter. [6 ...
The three splitters concur at the Nagel point of the triangle. Any line through a triangle that splits both the triangle's area and its perimeter in half goes through the triangle's incenter, and each triangle has one, two, or three of these lines. [2] Thus if there are three of them, they concur at the incenter.