Search results
Results From The WOW.Com Content Network
Freezing is a phase transition in which a liquid turns into a solid when its temperature is lowered below its freezing point. [ 1 ] [ 2 ] For most substances, the melting and freezing points are the same temperature; however, certain substances possess differing solid-liquid transition temperatures.
On the other hand, some constants, such as K f (the freezing point depression constant, or cryoscopic constant), depend on the identity of a substance, and so may be considered to describe the state of a system, and therefore may be considered physical properties. "Specific" properties are expressed on a per mass basis.
The phenomenon of freezing-point depression has many practical uses. The radiator fluid in an automobile is a mixture of water and ethylene glycol. The freezing-point depression prevents radiators from freezing in winter. Road salting takes advantage of this effect to lower the freezing point of the ice it is placed on.
One example of deposition is the process by which, in sub-freezing air, water vapour changes directly to ice without first becoming a liquid. This is how frost and hoar frost form on the ground or other surfaces. Another example is when frost forms on a leaf. For deposition to occur, thermal energy must be removed from a gas.
Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal , and some states only exist under extreme conditions, such as Bose–Einstein condensates and Fermionic condensates (in extreme cold), neutron-degenerate matter (in extreme density), and ...
Notably, this is the case of water, as illustrated graphically to the right, but also of Si, Ge, Ga, Bi. With extremely large changes in pressure, substantial changes to the melting point are observed. For example, the melting point of silicon at ambient pressure (0.1 MPa) is 1415 °C, but at pressures in excess of 10 GPa it decreases to 1000 °C.
When the phase change occurs, there is a "thermal arrest"; that is, the temperature stays constant. This is because the matter has more internal energy as a liquid or gas than in the state that it is cooling to. The amount of energy required for a phase change is known as latent heat. The "cooling rate" is the slope of the cooling curve at any ...
This is an energy balance which defines the position of the moving interface. Note that this evolving boundary is an unknown (hyper-)surface; hence, Stefan problems are examples of free boundary problems. Analogous problems occur, for example, in the study of porous media flow, mathematical finance and crystal growth from monomer solutions. [1]