When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    For a black body (a perfect absorber) there is no reflected radiation, and so the spectral radiance is entirely due to emission. In addition, a black body is a diffuse emitter (its emission is independent of direction). Blackbody radiation becomes a visible glow of light if the temperature of the object is high enough. [19]

  3. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    The importance of the Lummer and Kurlbaum cavity radiation source was that it was an experimentally accessible source of black-body radiation, as distinct from radiation from a simply exposed incandescent solid body, which had been the nearest available experimental approximation to black-body radiation over a suitable range of temperatures.

  4. Gustav Kirchhoff - Wikipedia

    en.wikipedia.org/wiki/Gustav_Kirchhoff

    Gustav Robert Kirchhoff (German: [ˈgʊs.taːf ˈkɪʁç.hɔf]; 12 March 1824 – 17 October 1887) was a German chemist, mathematican and physicist who contributed to the fundamental understanding of electrical circuits, spectroscopy and the emission of black-body radiation by heated objects. [1] [2] He also coined the term black body in 1860. [3]

  5. Black body - Wikipedia

    en.wikipedia.org/wiki/Black_body

    A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is called black-body radiation. The name "black body" is given because it absorbs all colors of light.

  6. Rayleigh–Jeans law - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Jeans_law

    Planck discovered the curve now known as Planck's law in October of that year and presented it in December. [3] Planck's original intent was to find a satisfactory derivation of Wien's expression for the blackbody radiation curve, which accurately described the data at high frequencies. Planck found Wien's original derivation inadequate and ...

  7. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The temperature of stars other than the Sun can be approximated using a similar means by treating the emitted energy as a black body radiation. [28] So: L = 4 π R 2 σ T 4 {\displaystyle L=4\pi R^{2}\sigma T^{4}} where L is the luminosity , σ is the Stefan–Boltzmann constant, R is the stellar radius and T is the effective temperature .

  8. Ultraviolet catastrophe - Wikipedia

    en.wikipedia.org/wiki/Ultraviolet_catastrophe

    The ultraviolet catastrophe, also called the Rayleigh–Jeans catastrophe, was the prediction of late 19th century and early 20th century classical physics that an ideal black body at thermal equilibrium would emit an unbounded quantity of energy as wavelength decreased into the ultraviolet range.

  9. Wien approximation - Wikipedia

    en.wikipedia.org/wiki/Wien_approximation

    Comparison of Wien’s curve and the Planck curve. Wien's approximation (also sometimes called Wien's law or the Wien distribution law) is a law of physics used to describe the spectrum of thermal radiation (frequently called the blackbody function). This law was first derived by Wilhelm Wien in 1896.