Search results
Results From The WOW.Com Content Network
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
To determine whether a result is statistically significant, a researcher calculates a p-value, which is the probability of observing an effect of the same magnitude or more extreme given that the null hypothesis is true. [5] [12] The null hypothesis is rejected if the p-value is less than (or equal to) a predetermined level, .
For diagnostic testing, the ordering clinician will have observed some symptom or other factor that raises the pretest probability relative to the general population. A likelihood ratio of greater than 1 for a test in a population indicates that a positive test result is evidence that a condition is present.
The weighted harmonic mean of p-values , …, is defined as = = = /, where , …, are weights that must sum to one, i.e. = =.Equal weights may be chosen, in which case = /.. In general, interpreting the HMP directly as a p-value is anti-conservative, meaning that the false positive rate is higher than expected.
The procedures of Bonferroni and Holm control the FWER under any dependence structure of the p-values (or equivalently the individual test statistics).Essentially, this is achieved by accommodating a `worst-case' dependence structure (which is close to independence for most practical purposes).
A clinical researcher might report: "in my own experience treatment X does not do well for condition Y". [3] [4] The use of a P value cut-off point of 0.05 was introduced by R.A. Fisher; this led to study results being described as either statistically significant or non-significant. [5]
In broad usage, the "practical clinical significance" answers the question, how effective is the intervention or treatment, or how much change does the treatment cause. In terms of testing clinical treatments, practical significance optimally yields quantified information about the importance of a finding, using metrics such as effect size, number needed to treat (NNT), and preventive fraction ...
The p-value is not the probability that the observed effects were produced by random chance alone. [2] The p-value is computed under the assumption that a certain model, usually the null hypothesis, is true. This means that the p-value is a statement about the relation of the data to that hypothesis. [2]