When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Apparent magnitude - Wikipedia

    en.wikipedia.org/wiki/Apparent_magnitude

    Flux decreases with distance according to an inverse-square law, so the apparent magnitude of a star depends on both its absolute brightness and its distance (and any extinction). For example, a star at one distance will have the same apparent magnitude as a star four times as bright at twice that distance.

  3. Mass–luminosity relation - Wikipedia

    en.wikipedia.org/wiki/Mass–luminosity_relation

    This equation and the usual value of a = 3.5 only applies to main-sequence stars with masses 2M ⊙ < M < 55M ⊙ and does not apply to red giants or white dwarfs. As a star approaches the Eddington luminosity then a = 1. In summary, the relations for stars with different ranges of mass are, to a good approximation, as the following: [2] [4] [5]

  4. Magnitude (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Magnitude_(astronomy)

    Early photometric measurements (made, for example, by using a light to project an artificial “star” into a telescope's field of view and adjusting it to match real stars in brightness) demonstrated that first magnitude stars are about 100 times brighter than sixth magnitude stars.

  5. Orders of magnitude (illuminance) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    Factor ()Multiple Value Item 0 0 lux 0 lux Absolute darkness 10 −4: 100 microlux 100 microlux: Starlight overcast moonless night sky [1]: 140 microlux: Venus at brightest [1]: 200 microlux

  6. Photographic magnitude - Wikipedia

    en.wikipedia.org/wiki/Photographic_magnitude

    Prior to photographic methods to determine magnitude, the brightness of celestial objects was determined by visual photometric methods.This was simply achieved with the human eye by compared the brightness of an astronomical object with other nearby objects of known or fixed magnitude: especially regarding stars, planets and other planetary objects in the Solar System, variable stars [1] and ...

  7. Eddington luminosity - Wikipedia

    en.wikipedia.org/wiki/Eddington_luminosity

    Other factors that might affect the maximum luminosity of a star include: Porosity. A problem with steady winds driven by broad-spectrum radiation is that both the radiative flux and gravitational acceleration scale with r −2. The ratio between these factors is constant, and in a super-Eddington star, the whole envelope would become ...

  8. Surface brightness - Wikipedia

    en.wikipedia.org/wiki/Surface_brightness

    A truly dark sky has a surface brightness of 2 × 10 −4 cd m −2 or 21.8 mag arcsec −2. [9] [clarification needed] The peak surface brightness of the central region of the Orion Nebula is about 17 Mag/arcsec 2 (about 14 milli nits) and the outer bluish glow has a peak surface brightness of 21.3 Mag/arcsec 2 (about 0.27 millinits). [10]

  9. Sky brightness - Wikipedia

    en.wikipedia.org/wiki/Sky_brightness

    (The S 10 unit is defined as the surface brightness of a star whose V-magnitude is 10 and whose light is smeared over one square degree, or 27.78 mag arcsec −2.) The total sky brightness in zenith is therefore ~220 S 10 or 21.9 mag/arcsec² in the V-band. Note that the contributions from Airglow and Zodiacal light vary with the time of year ...

  1. Related searches brightness of a star example equation problems pdf printable form for dementia caregivers

    how to calculate brightnessastronomy magnitude of stars
    apparent magnitude of a star