Search results
Results From The WOW.Com Content Network
Download as PDF; Printable version; In other projects ... move to sidebar hide. A perfect square is an element of algebraic structure that is equal to the square of ...
Squares of odd numbers are odd, and are congruent to 1 modulo 8, since (2n + 1) 2 = 4n(n + 1) + 1, and n(n + 1) is always even. In other words, all odd square numbers have a remainder of 1 when divided by 8. Every odd perfect square is a centered octagonal number. The difference between any two odd perfect squares is a multiple of 8.
A magic hypercube of dimension n is perfect if all pan-n-agonals sum correctly. Then all lower-dimension hypercubes contained in it are also perfect. For dimension 2, The Pandiagonal Magic Square has been called perfect for many years. This is consistent with the perfect (Nasik) definitions given above for the cube.
A most-perfect magic square of order n is a magic square containing the numbers 1 to n 2 with two additional properties: Each 2 × 2 subsquare sums to 2 s , where s = n 2 + 1. All pairs of integers distant n /2 along a (major) diagonal sum to s .
The following is a list of all currently known Mersenne primes and perfect numbers, along with their corresponding exponents p. As of 2024, there are 52 known Mersenne primes (and therefore perfect numbers), the largest 18 of which have been discovered by the distributed computing project Great Internet Mersenne Prime Search, or GIMPS. [2]
The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Smith diagram of a rectangle. A "perfect" squared square is a square such that each of the smaller squares has a different size. Perfect squared squares were studied by R. L. Brooks, C. A. B. Smith, A. H. Stone and W. T. Tutte (writing under the collective pseudonym "Blanche Descartes") at Cambridge University between 1936 and 1938.