Search results
Results From The WOW.Com Content Network
Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.
NAD + is the oxidizing agent in glycolysis, as it is in most other energy yielding metabolic reactions (e.g. beta-oxidation of fatty acids, and during the citric acid cycle). The NADH thus produced is primarily used to ultimately transfer electrons to O 2 to produce water, or, when O 2 is not available, to produce compounds such as lactate or ...
Occurs in glycolysis and in the citric acid cycle. [1] Unlike oxidative phosphorylation, oxidation and phosphorylation are not coupled in the process of substrate-level phosphorylation, and reactive intermediates are most often gained in the course of oxidation processes in catabolism.
The citric acid cycle is also called the Krebs cycle or the tricarboxylic acid cycle. When oxygen is present, acetyl-CoA is produced from the pyruvate molecules created from glycolysis. Once acetyl-CoA is formed, aerobic or anaerobic respiration can occur. When oxygen is present, the mitochondria will undergo aerobic respiration which leads to ...
Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and this complex links the glycolysis metabolic pathway to the citric acid cycle. Pyruvate decarboxylation is also known as the "pyruvate dehydrogenase reaction" because it also involves the oxidation of pyruvate. [2]
All cells can perform anaerobic respiration by glycolysis. Additionally, most organisms can perform more efficient aerobic respiration through the citric acid cycle and oxidative phosphorylation. Additionally plants, algae and cyanobacteria are able to use sunlight to anabolically synthesize compounds from non-living matter by photosynthesis.
If oxygen is present, then following glycolysis, the two pyruvate molecules are brought into the mitochondrion itself to go through the Krebs cycle. In this cycle, the pyruvate molecules from glycolysis are further broken down to harness the remaining energy. Each pyruvate goes through a series of reactions that converts it to acetyl coenzyme A.
Citric acid cycle: Through a series of chemical reactions, stored energy is released through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins into adenosine triphosphate (ATP) and carbon dioxide. Fatty acid metabolism. Acetyl-CoA is produced by the breakdown of both carbohydrates (by glycolysis) and lipids (by β ...