When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

  3. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    Since the probability of a log-normal can be computed in any domain, this means that the cdf (and consequently pdf and inverse cdf) of any function of a log-normal variable can also be computed. [15] (Matlab code)

  4. Empirical distribution function - Wikipedia

    en.wikipedia.org/wiki/Empirical_distribution...

    In MATLAB we can use Empirical cumulative distribution function (cdf) plot; jmp from SAS, the CDF plot creates a plot of the empirical cumulative distribution function. Minitab, create an Empirical CDF; Mathwave, we can fit probability distribution to our data; Dataplot, we can plot Empirical CDF plot; Scipy, we can use scipy.stats.ecdf

  5. Generalized Pareto distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_Pareto...

    The standard cumulative distribution function (cdf) of the GPD is defined by [6] ... The pdf is a solution of the following differential equation: ...

  6. Triangular distribution - Wikipedia

    en.wikipedia.org/wiki/Triangular_distribution

    This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]

  7. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    The probability density function is the partial derivative of the cumulative distribution function: (;,) = (;,) = / (+ /) = (() / + / ()) = ⁡ ().When the location parameter μ is 0 and the scale parameter s is 1, then the probability density function of the logistic distribution is given by

  8. Half-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Half-normal_distribution

    Using the parametrization of the normal distribution, the probability density function (PDF) of the half-normal is ... The quantile function (or inverse CDF) is ...

  9. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used. Theorem. If the characteristic function φ X of a random variable X is integrable, then F X is absolutely continuous, and therefore X has a probability density function.