When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Horizon - Wikipedia

    en.wikipedia.org/wiki/Horizon

    For radar (e.g. for wavelengths 300 to 3 mm i.e. frequencies between 1 and 100 GHz) the radius of the Earth may be multiplied by 4/3 to obtain an effective radius giving a factor of 4.12 in the metric formula i.e. the radar horizon will be 15% beyond the geometrical horizon or 7% beyond the visual. The 4/3 factor is not exact, as in the visual ...

  3. Line-of-sight propagation - Wikipedia

    en.wikipedia.org/wiki/Line-of-sight_propagation

    The radio horizon is the locus of points at which direct rays from an antenna are tangential to the surface of the Earth. If the Earth were a perfect sphere without an atmosphere, the radio horizon would be a circle. The radio horizon of the transmitting and receiving antennas can be added together to increase the effective communication range.

  4. Cosmological horizon - Wikipedia

    en.wikipedia.org/wiki/Cosmological_horizon

    The particle horizon, also called the cosmological horizon, the comoving horizon, or the cosmic light horizon, is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. It represents the boundary between the observable and the unobservable regions of the universe, so its distance at ...

  5. Particle horizon - Wikipedia

    en.wikipedia.org/wiki/Particle_horizon

    The particle horizon (also called the cosmological horizon, the comoving horizon (in Scott Dodelson's text), or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the universe.

  6. Comoving and proper distances - Wikipedia

    en.wikipedia.org/wiki/Comoving_and_proper_distances

    The comoving distance from an observer to a distant object (e.g. galaxy) can be computed by the following formula (derived using the Friedmann–Lemaître–Robertson–Walker metric): = ′ (′) where a(t′) is the scale factor, t e is the time of emission of the photons detected by the observer, t is the present time, and c is the speed of ...

  7. Angular diameter - Wikipedia

    en.wikipedia.org/wiki/Angular_diameter

    The formula is related to the zenith angle to the horizon, δ = π − 2 arccos ⁡ ( R R + h ) {\displaystyle \delta =\pi -2\arccos \left({\frac {R}{R+h}}\right)} where R is the radius of the sphere and h is the distance to the near surface of the sphere.

  8. Reissner–Nordström metric - Wikipedia

    en.wikipedia.org/wiki/Reissner–Nordström_metric

    Although charged black holes with r Q ≪ r s are similar to the Schwarzschild black hole, they have two horizons: the event horizon and an internal Cauchy horizon. [8] As with the Schwarzschild metric, the event horizons for the spacetime are located where the metric component diverges; that is, where + = =

  9. Event horizon - Wikipedia

    en.wikipedia.org/wiki/Event_horizon

    A cosmic event horizon is a real event horizon because it affects all kinds of signals, including gravitational waves, which travel at the speed of light. More specific horizon types include the related but distinct absolute and apparent horizons found around a black hole. Other distinct types include: