Search results
Results From The WOW.Com Content Network
Scalar multiplication of a vector by a factor of 3 stretches the vector out. The scalar multiplications −a and 2a of a vector a. In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra [1] [2] [3] (or more generally, a module in abstract algebra [4] [5]).
Using the algebraic properties of subtraction and division, along with scalar multiplication, it is also possible to “subtract” two vectors and “divide” a vector by a scalar. Vector subtraction is performed by adding the scalar multiple of −1 with the second vector operand to the first vector operand. This can be represented by the ...
In mathematics, vector multiplication may refer to one of several operations between two (or more) vectors. It may concern any of the following articles: Dot product – also known as the "scalar product", a binary operation that takes two vectors and returns a scalar quantity. The dot product of two vectors can be defined as the product of the ...
For a tensor field of order k > 1, the tensor field of order k is defined by the recursive relation = where is an arbitrary constant vector. A tensor field of order greater than one may be decomposed into a sum of outer products, and then the following identity may be used: = ().
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.
In 3 dimensions the curl of a vector field is a vector field as is familiar (in 1 and 0 dimensions the curl of a vector field is 0, because there are no non-trivial 2-vectors), while in 4 dimensions the curl of a vector field is, geometrically, at each point an element of the 6-dimensional Lie algebra ().
Vectors and scalars can be added. When a vector is added to a scalar, a completely different entity, a quaternion is created. A vector plus a scalar is always a quaternion even if the scalar is zero. If the scalar added to the vector is zero then the new quaternion produced is called a right quaternion. It has an angle characteristic of 90 degrees.