When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mellin inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Mellin_inversion_theorem

    The boundedness condition on () can be strengthened if is continuous. If () is analytic in the strip < <, and if | | < | |, where K is a positive constant, then () as defined by the inversion integral exists and is continuous; moreover the Mellin transform of is for at least < <.

  3. Two-sided Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Two-sided_Laplace_transform

    Two-sided Laplace transforms are closely related to the Fourier transform, the Mellin transform, the Z-transform and the ordinary or one-sided Laplace transform. If f(t) is a real- or complex-valued function of the real variable t defined for all real numbers, then the two-sided Laplace transform is defined by the integral

  4. Cancellation property - Wikipedia

    en.wikipedia.org/wiki/Cancellation_property

    An element a in a magma (M, ∗) has the two-sided cancellation property (or is cancellative) if it is both left- and right-cancellative. A magma (M, ∗) has the left cancellation property (or is left-cancellative) if all a in the magma are left cancellative, and similar definitions apply for the right cancellative or two-sided cancellative ...

  5. Fourier inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Fourier_inversion_theorem

    A higher-dimensional analogue of this form of the theorem also holds, but according to Folland (1992) is "rather delicate and not terribly useful". Piecewise continuous; one dimension If the function is absolutely integrable in one dimension (i.e. f ∈ L 1 ( R ) {\displaystyle f\in L^{1}(\mathbb {R} )} ) but merely piecewise continuous then a ...

  6. Mellin transform - Wikipedia

    en.wikipedia.org/wiki/Mellin_transform

    In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform.This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier ...

  7. Digon - Wikipedia

    en.wikipedia.org/wiki/Digon

    In geometry, a bigon, [1] digon, or a 2-gon, is a polygon with two sides and two vertices.Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space.

  8. Bears WR Keenan Allen on issues with ousted OC Shane ... - AOL

    www.aol.com/sports/bears-wr-keenan-allen-issues...

    Bears receiver Keenan Allen said that issues ran deeper than that and went back to the offseason. “Too nice of a guy," Allen said, according to Kalyn Kahler of ESPN, via Dan Wiederer of the ...

  9. Symmetric algebra - Wikipedia

    en.wikipedia.org/wiki/Symmetric_algebra

    The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the two-sided ideal generated by the elements of the form x ⊗ y − y ⊗ x. All these definitions and properties extend naturally to the case where V is a module (not necessarily a free one) over a commutative ring.