Search results
Results From The WOW.Com Content Network
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]
One side of the square is labeled with the sexagesimal number 30. The diagonal of the square is labeled with two sexagesimal numbers. The first of these two, 1;24,51,10 represents the number 305470/216000 ≈ 1.414213, a numerical approximation of the square root of two that is off by less than one part in two million.
The diagonal displays an approximation of the square root of 2 in four sexagesimal figures, 1 24 51 10, which is good to about six decimal digits. 1 + 24/60 + 51/60 2 + 10/60 3 = 1.41421296... The tablet also gives an example where one side of the square is 30, and the resulting diagonal is 42 25 35 or 42.4263888...
However, these characters differ in appearance from most mathematical typesetting by omitting the overline connected to the radical symbol, which surrounds the argument of the square root function. The OpenType math table allows adding this overline following the radical symbol. Legacy encodings of the square root character U+221A include:
Besides showing the square root of 2 in sexagesimal (1 24 51 10), the tablet also gives an example where one side of the square is 30 and the diagonal then is 42 25 35. The sexagesimal digit 30 can also stand for 0 30 = 1 / 2 , in which case 0 42 25 35 is approximately 0.7071065.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
As discussed in § Constructibility, only certain angles that are rational multiples of radians have trigonometric values that can be expressed with square roots. The angle 1°, being / = / radians, has a repeated factor of 3 in the denominator and therefore cannot be expressed using only square roots. A related question is whether it can ...