Ads
related to: effective shield for neutron radiation treatment
Search results
Results From The WOW.Com Content Network
Lead shielding refers to the use of lead as a form of radiation protection to shield people or objects from radiation so as to reduce the effective dose. Lead can effectively attenuate certain kinds of radiation because of its high density and high atomic number ; principally, it is effective at stopping gamma rays and x-rays .
This ceramic material is a very efficient shielding material since it presents both high atomic number (uranium) for gamma shielding, and low atomic number (water bonded in the concrete) for neutron shielding. [1] There exists an optimum uranium-to-binder ratio for a combined attenuation of gamma and neutron radiation at a given wall thickness.
The effectiveness of shielding is dependent on stopping power, which varies with the type and energy of radiation and the shielding material used. Different shielding techniques are therefore used depending on the application and the type and energy of the radiation. Shielding reduces the intensity of radiation, increasing with thickness.
Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides —which, in turn, may trigger further neutron radiation.
BNCT has been evaluated as an alternative to conventional radiation therapy for malignant brain tumors such as glioblastomas, which presently are incurable, and more recently, locally advanced recurrent cancers of the head and neck region and, much less often, superficial melanomas mainly involving the skin and genital region. [1] [2] [3]
Diffusion cloud chamber with tracks of ionizing radiation (alpha particles) that are made visible as strings of droplets. In dosimetry, linear energy transfer (LET) is the amount of energy that an ionizing particle transfers to the material traversed per unit distance. It describes the action of radiation into matter.