When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    The Legendre polynomials were first introduced in 1782 by Adrien-Marie Legendre [3] as the coefficients in the expansion of the Newtonian potential | ′ | = + ′ ′ ⁡ = = ′ + (⁡), where r and r′ are the lengths of the vectors x and x′ respectively and γ is the angle between those two vectors.

  3. Associated Legendre polynomials - Wikipedia

    en.wikipedia.org/.../Associated_Legendre_polynomials

    The Legendre polynomials are closely related to hypergeometric series. In the form of spherical harmonics, they express the symmetry of the two-sphere under the action of the Lie group SO(3). There are many other Lie groups besides SO(3), and analogous generalizations of the Legendre polynomials exist to express the symmetries of semi-simple ...

  4. Legendre function - Wikipedia

    en.wikipedia.org/wiki/Legendre_function

    The general Legendre equation reads ″ ′ + [(+)] =, where the numbers λ and μ may be complex, and are called the degree and order of the relevant function, respectively. . The polynomial solutions when λ is an integer (denoted n), and μ = 0 are the Legendre polynomials P n; and when λ is an integer (denoted n), and μ = m is also an integer with | m | < n are the associated Legendre ...

  5. Rodrigues' formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_formula

    In mathematics, Rodrigues' formula (formerly called the Ivory–Jacobi formula) generates the Legendre polynomials. It was independently introduced by Olinde Rodrigues , Sir James Ivory and Carl Gustav Jacobi .

  6. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    Carl Friedrich Gauss was the first to derive the Gauss–Legendre quadrature rule, doing so by a calculation with continued fractions in 1814. [4] He calculated the nodes and weights to 16 digits up to order n=7 by hand. Carl Gustav Jacob Jacobi discovered the connection between the quadrature rule and the orthogonal family of Legendre polynomials.

  7. Adrien-Marie Legendre - Wikipedia

    en.wikipedia.org/wiki/Adrien-Marie_Legendre

    Adrien-Marie Legendre (/ l ə ˈ ʒ ɑː n d ər,-ˈ ʒ ɑː n d /; [3] French: [adʁiɛ̃ maʁi ləʒɑ̃dʁ]; 18 September 1752 – 9 January 1833) was a French mathematician who made numerous contributions to mathematics. Well-known and important concepts such as the Legendre polynomials and Legendre transformation are named after him.

  8. Legendre moment - Wikipedia

    en.wikipedia.org/wiki/Legendre_moment

    In mathematics, Legendre moments are a type of image moment and are achieved by using the Legendre polynomial. Legendre moments are used in areas of image processing including: pattern and object recognition, image indexing, line fitting, feature extraction, edge detection, and texture analysis. [ 1 ]

  9. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    In mathematics, Legendre's formula gives an expression for the exponent of the largest power of a prime p that divides the factorial n!. It is named after Adrien-Marie Legendre . It is also sometimes known as de Polignac's formula , after Alphonse de Polignac .