Search results
Results From The WOW.Com Content Network
The word was proposed to prevent confusion between luma as implemented in video engineering and relative luminance as used in color science (i.e. as defined by CIE). Relative luminance is formed as a weighted sum of linear RGB components, not gamma-compressed ones. Even so, luma is sometimes erroneously called luminance. [2]
"HCL" designed in 2005 by Sarifuddin and Missaou, which is a transformation of whatever type of RGB color space is in use. [5] HCT with tone as a synonym for luminance is then used within Material Design for its color system, using value ranges of 0–360°, 0–120+ and 0–100%, respectively. [6]
Relative luminance follows the photometric definition of luminance including spectral weighting for human vision, but while luminance is a measure of light in units such as /, relative luminance values are normalized as 0.0 to 1.0 (or 1 to 100), with 1.0 (or 100) being a theoretical perfect reflector of 100% reference white. [1]
The first three numbers are the white point to use, then the average surround lighting, in this case 200 cd/m², then the relative luminance of the surround on the same scale as the white point, in this case 18%, then the surround conditions, where 1 = average, 2 = dim and 3 = dark, and then XYZ coordinates of the color to check.
A comparison between a typical normalized M cone's spectral sensitivity and the CIE 1931 luminosity function for a standard observer in photopic vision. In the CIE 1931 model, Y is the luminance, Z is quasi-equal to blue (of CIE RGB), and X is a mix of the three CIE RGB curves chosen to be nonnegative (see § Definition of the CIE XYZ color space).
Normalized responsivity spectra of human cone cells, S, M, and L types (SMJ data based on Stiles and Burch [1] RGB color-matching, linear scale, weighted for equal energy) [2] LMS (long, medium, short), is a color space which represents the response of the three types of cones of the human eye , named for their responsivity (sensitivity) peaks ...
N bb is a fudge factor that is normally 1; it's only of concern when comparing brightness judgements based on slightly different reference whites. Here Y is the relative luminance compared to white on a scale of 0 to 1 and L A is the average luminance of the adapting visual field as a whole, measured in cd/m 2.
Example: A surface with a luminance of say 100 cd/m 2 (= 100 nits, typical PC monitor) will, if it is a perfect Lambert emitter, have a luminous emittance of 100π lm/m 2. If its area is 0.1 m 2 (~19" monitor) then the total light emitted, or luminous flux, would thus be 31.4 lm.