Search results
Results From The WOW.Com Content Network
The state-space representation (also known as the "time-domain approach") provides a convenient and compact way to model and analyze systems with multiple inputs and outputs. With p {\displaystyle p} inputs and q {\displaystyle q} outputs, we would otherwise have to write down q × p {\displaystyle q\times p} Laplace transforms to encode all ...
State space search is a process used in the field of computer science, including artificial intelligence (AI), in which successive configurations or states of an instance are considered, with the intention of finding a goal state with the desired property. Problems are often modelled as a state space, a set of states that a problem
In artificial intelligence and computer programming, state space planning is a process used in designing programs to search for data or solutions to problems. In a computer algorithm that searches a data structure for a piece of data, for example a program that looks up a word in a computer dictionary, the state space is a collective term for all the data to be searched.
Vacuum World, a shortest path problem with a finite state space. In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". [1] It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory.
His pioneer work, co-authored with Charles Desoer, Linear System Theory: The State Space Approach, laid a critical foundation for all modern approaches to system analysis and control. [30] The second and more well-known contribution of Zadeh's research is his lifelong dedication to the creation, enhancement and the real-world impacts of a broad ...
Any given transfer function which is strictly proper can easily be transferred into state-space by the following approach (this example is for a 4-dimensional, single-input, single-output system)): Given a transfer function, expand it to reveal all coefficients in both the numerator and denominator. This should result in the following form:
In mathematics, specifically in control theory, subspace identification (SID) aims at identifying linear time invariant (LTI) state space models from input-output data. SID does not require that the user parametrizes the system matrices before solving a parametric optimization problem and, as a consequence, SID methods do not suffer from problems related to local minima that often lead to ...
In control engineering and other areas of science and engineering, state variables are used to represent the states of a general system. The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the ...