When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    t-distributed stochastic neighbor embedding (t-SNE) is a statistical method for visualizing high-dimensional data by giving each datapoint a location in a two or three-dimensional map. It is based on Stochastic Neighbor Embedding originally developed by Geoffrey Hinton and Sam Roweis, [ 1 ] where Laurens van der Maaten and Hinton proposed the t ...

  3. Dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Dimensionality_reduction

    T-distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear dimensionality reduction technique useful for the visualization of high-dimensional datasets. It is not recommended for use in analysis such as clustering or outlier detection since it does not necessarily preserve densities or distances well. [18]

  4. Nonlinear dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_dimensionality...

    Nonlinear dimensionality reduction, also known as manifold learning, is any of various related techniques that aim to project high-dimensional data, potentially existing across non-linear manifolds which cannot be adequately captured by linear decomposition methods, onto lower-dimensional latent manifolds, with the goal of either visualizing ...

  5. Latent space - Wikipedia

    en.wikipedia.org/wiki/Latent_space

    Additionally, the latent space may be high-dimensional, complex, and nonlinear, which may add to the difficulty of interpretation. [2] Some visualization techniques have been developed to connect the latent space to the visual world, but there is often not a direct connection between the latent space interpretation and the model itself.

  6. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    This multispectral data set includes terahertz, thermal, visual, near infrared, and three-dimensional videos of objects hidden under people's clothes. 3D lookup tables are provided that allow you to project images onto 3D point clouds. More than 20 videos. The duration of each video is about 85 seconds (about 345 frames). AP2J

  7. Scientific visualization - Wikipedia

    en.wikipedia.org/wiki/Scientific_visualization

    The primary methods for visualizing two-dimensional (2D) scalar fields are color mapping and drawing contour lines. 2D vector fields are visualized using glyphs and streamlines or line integral convolution methods. 2D tensor fields are often resolved to a vector field by using one of the two eigenvectors to represent the tensor each point in ...

  8. Parallel coordinates - Wikipedia

    en.wikipedia.org/wiki/Parallel_coordinates

    Parallel Coordinates plots are a common method of visualizing high-dimensional datasets to analyze multivariate data having multiple variables, or attributes. To plot, or visualize, a set of points in n -dimensional space , n parallel lines are drawn over the background representing coordinate axes, typically oriented vertically with equal spacing.

  9. High-dimensional statistics - Wikipedia

    en.wikipedia.org/wiki/High-dimensional_statistics

    Nevertheless, the situation in high-dimensional statistics may not be hopeless when the data possess some low-dimensional structure. One common assumption for high-dimensional linear regression is that the vector of regression coefficients is sparse , in the sense that most coordinates of β {\displaystyle \beta } are zero.