Search results
Results From The WOW.Com Content Network
Wind and moist air are drawn by the prevailing winds towards the top of the mountains, condensing and precipitating before it crosses the top. In an effect opposite that of orographic lift, the air, without much moisture left, advances behind the mountains, creating a drier side called the "rain shadow". [citation needed]
It forms above the mountain range, usually at the beginning of a chinook wind as a result of orographic lifting over the range. It appears when seen from downwind to form an arch over the mountain range. A layer of clear air separates it from the mountain. [3] A view of the Front Range of the Rockies capped by a föhn wall.
When the flow of dry air continuously blows over vast desert regions, it picks up fine sand and dust particles and finally results in a dusty wind which is generally felt in the periphery of the desert. When this wind blows over Egypt, it causes high temperatures to soar temporarily at dangerous levels, usually over 49–50 °C (120–122 °F ...
An orographic map of Eastern Siberia from 1875 by Peter Kropotkin. Orography is the study of the topographic relief of mountains, [1] and can more broadly include hills, and any part of a region's elevated terrain. [2] Orography (also known as oreography, orology, or oreology) falls within the broader discipline of geomorphology. [3]
Orographic or relief rainfall is caused when masses of air are forced up the side of elevated land formations, such as large mountains or plateaus (often referred to as an upslope effect). The lift of the air up the side of the mountain results in adiabatic cooling with altitude, and ultimately condensation and precipitation.
In general, Egypt is a very dry country. The Western Desert receives only occasional rainfall, the winters being mild and the summers very hot. The Eastern Desert receives some precipitation in the south in the form of orographic rainfall from winds that have crossed the Red Sea; this may cause torrential flows in the wadis. The winters here ...
Tectonic–climatic interaction is the interrelationship between tectonic processes and the climate system. The tectonic processes in question include orogenesis, volcanism, and erosion, while relevant climatic processes include atmospheric circulation, orographic lift, monsoon circulation and the rain shadow effect.
Thundersnow is possible within a cyclone's comma head and within lake effect precipitation bands. In mountainous areas, heavy precipitation is possible where upslope flow is maximized within windward sides of the terrain at elevation. On the leeward side of mountains, desert climates can exist due to the dry air caused by compressional heating.