When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Domain of a function - Wikipedia

    en.wikipedia.org/wiki/Domain_of_a_function

    A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.

  3. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  4. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    Graph of a linear function Graph of a polynomial function, here a quadratic function. Graph of two trigonometric functions: sine and cosine . A real function is a real-valued function of a real variable , that is, a function whose codomain is the field of real numbers and whose domain is a set of real numbers that contains an interval .

  5. Codomain - Wikipedia

    en.wikipedia.org/wiki/Codomain

    It is the set Y in the notation f: X → Y. The term range is sometimes ambiguously used to refer to either the codomain or the image of a function. A codomain is part of a function f if f is defined as a triple (X, Y, G) where X is called the domain of f, Y its codomain, and G its graph. [1]

  6. Range of a function - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_function

    is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.

  7. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    Interpretation for surjective functions in the Cartesian plane, defined by the mapping f : X → Y, where y = f(x), X = domain of function, Y = range of function. Every element in the range is mapped onto from an element in the domain, by the rule f. There may be a number of domain elements which map to the same range element.

  8. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    Sigmoid functions have domain of all real numbers, with return (response) value commonly monotonically increasing but could be decreasing. Sigmoid functions most often show a return value (y axis) in the range 0 to 1. Another commonly used range is from −1 to 1.

  9. Restriction (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Restriction_(mathematics)

    More generally, the restriction (or domain restriction or left-restriction) of a binary relation between and may be defined as a relation having domain , codomain and graph ( ) = {(,) ():}. Similarly, one can define a right-restriction or range restriction R B . {\displaystyle R\triangleright B.}