Search results
Results From The WOW.Com Content Network
The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle [1] of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into glucose. The Calvin cycle is present in all photosynthetic eukaryotes and also many ...
Overview of the Calvin cycle and carbon fixation C3 Pathway. 2 H 2 O + 2 NADP + + 3 ADP + 3 P i + light → 2 NADPH + 2 H + + 3 ATP + O 2. The light-independent reactions undergo the Calvin-Benson cycle, in which the energy from NADPH and ATP is used to convert carbon dioxide and water into organic compounds via the enzyme RuBisCO.
Calvin–Benson cycle. C 3 carbon fixation is the most common of three metabolic pathways for carbon fixation in photosynthesis, the other two being C 4 and CAM.This process converts carbon dioxide and ribulose bisphosphate (RuBP, a 5-carbon sugar) into two molecules of 3-phosphoglycerate through the following reaction:
The desired reaction is the addition of carbon dioxide to RuBP (carboxylation), a key step in the Calvin–Benson cycle, but approximately 25% of reactions by RuBisCO instead add oxygen to RuBP (oxygenation), creating a product that cannot be used within the Calvin–Benson cycle
Melvin Calvin and Andrew Benson, along with James Bassham, elucidated the path of carbon assimilation (the photosynthetic carbon reduction cycle) in plants. The carbon reduction cycle is known as the Calvin cycle, but many scientists refer to it as the Calvin-Benson, Benson-Calvin, or even Calvin-Benson-Bassham (or CBB) Cycle.
CO 2 is then introduced into the Calvin cycle, a coupled and self-recovering enzyme system, which is used to build branched carbohydrates. The by-product pyruvate can be further degraded in the mitochondrial citric acid cycle, thereby providing additional CO 2 molecules for the Calvin Cycle.
This PGA is chemically reduced in the mesophyll and diffuses back to the bundle sheath where it enters the conversion phase of the Calvin cycle. For each CO 2 molecule exported to the bundle sheath the malate shuttle transfers two electrons, and therefore reduces the demand of reducing power in the bundle sheath.
The Calvin cycle showing the carboxylation of ribulose-1,5-bisphosphate. Carboxyglutamic acid. Many carboxylases, including Acetyl-CoA carboxylase, Methylcrotonyl-CoA carboxylase, Propionyl-CoA carboxylase, and Pyruvate carboxylase require biotin as a cofactor. These enzymes are involved in various biogenic pathways. [13]