When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).

  3. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...

  4. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    In its original concept, gravity was a force between point masses. Following Isaac Newton, Pierre-Simon Laplace attempted to model gravity as some kind of radiation field or fluid, [citation needed] and since the 19th century, explanations for gravity in classical mechanics have usually been taught in terms of a field model, rather than a point ...

  5. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    The hammer and the feather both fell at the same rate and hit the surface at the same time. This demonstrated Galileo's discovery that, in the absence of air resistance, all objects experience the same acceleration due to gravity. On the Moon, however, the gravitational acceleration is approximately 1.63 m/s 2, or only about 1 ⁄ 6 that on Earth.

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Near the surface of the Earth, the acceleration due to gravity g = 9.807 m/s 2 (metres per second squared, which might be thought of as "metres per second, per second"; or 32.18 ft/s 2 as "feet per second per second") approximately. A coherent set of units for g, d, t and v is essential.

  7. Peak ground acceleration - Wikipedia

    en.wikipedia.org/wiki/Peak_ground_acceleration

    Peak ground acceleration can be expressed in fractions of g (the standard acceleration due to Earth's gravity, equivalent to g-force) as either a decimal or percentage; in m/s 2 (1 g = 9.81 m/s 2); [7] or in multiples of Gal, where 1 Gal is equal to 0.01 m/s 2 (1 g = 981 Gal).

  8. Supercritical flow - Wikipedia

    en.wikipedia.org/wiki/Supercritical_flow

    g = acceleration due to gravity (9.81 m/s² or 32.2 ft/s²) h = depth of flow relative to the channel bottom If F r < 1 {\displaystyle Fr<1} , we call the flow subcritical ; if F r > 1 {\displaystyle Fr>1} , we call the flow supercritical .

  9. Froude–Krylov force - Wikipedia

    en.wikipedia.org/wiki/Froude–Krylov_force

    The diffraction force is due to the floating body disturbing the waves. ... is the acceleration due to the earth's gravity (9.81 m/s 2) is the wave ...