Search results
Results From The WOW.Com Content Network
The Einstein–Hilbert action in general relativity is the action that yields the Einstein field equations through the stationary-action principle.With the (− + + +) metric signature, the gravitational part of the action is given as [1]
In general, the Lagrangian is that function which when integrated over produces the Action functional. David Hilbert gave an early and classic formulation of the equations in Einstein's general relativity. [2] This used the functional now called the Einstein-Hilbert action.
The action principle can be extended to obtain the equations of motion for fields, such as the electromagnetic field or gravitational field. Maxwell's equations can be derived as conditions of stationary action. The Einstein equation utilizes the Einstein–Hilbert action as constrained by a variational principle.
The Einstein–Hilbert action for general relativity was first formulated purely in terms of the space-time metric. To take the metric and affine connection as independent variables in the action principle was first considered by Palatini. [1]
The second-order formalism action is then acquired by substituting this expression for the spin connection back into the action, yielding additional quartic gravitino vertices, with the Einstein–Hilbert and Rarita–Schwinger actions now being written with a torsionless spin connection that explicitly depends on the vielbeins.
Hilbert claimed priority for the introduction of the Riemann scalar into the action principle and the derivation of the field equations from it," [B 6] (Sauer mentions a letter and a draft letter where Hilbert defends his priority for the action functional) "and Einstein admitted publicly that Hilbert (and Lorentz) had succeeded in giving the ...
The integral of is known as the Einstein–Hilbert action. The Riemann tensor is the tidal force tensor, and is constructed out of Christoffel symbols and derivatives of Christoffel symbols, which define the metric connection on spacetime. The gravitational field itself was historically ascribed to the metric tensor; the modern view is that the ...
In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary. The Einstein–Hilbert action is the basis for the most elementary variational principle from which the field equations of general relativity can be