Search results
Results From The WOW.Com Content Network
The Rankine vortex is a simple mathematical model of a vortex in a viscous fluid. It is named after its discoverer, William John Macquorn Rankine. The vortices observed in nature are usually modelled with an irrotational (potential or free) vortex. However, in a potential vortex, the velocity becomes infinite at the vortex center.
A vortex tube is the surface in the continuum formed by all vortex lines passing through a given (reducible) closed curve in the continuum. The 'strength' of a vortex tube (also called vortex flux ) [ 10 ] is the integral of the vorticity across a cross-section of the tube, and is the same everywhere along the tube (because vorticity has zero ...
The process 3–4 in a Rankine cycle is isentropic when the steam turbine is said to be an ideal one. So the expansion process in a turbine can be easily calculated using the h–s chart when the process is considered to be ideal (which is the case normally when calculating enthalpies, entropies, etc.
Knaff and Zehr (2007) came up with the following formula to relate wind and pressure, taking into account movement, size, and latitude: [5] = (/) + ′ Where V srm is the max wind speed corrected for storm speed, phi is the latitude, and S is the size parameter. [5]
The Rankine vortex is a model that assumes a rigid-body rotational flow where r is less than a fixed distance r 0, and irrotational flow outside that core regions. In a viscous fluid, irrotational flow contains viscous dissipation everywhere, yet there are no net viscous forces, only viscous stresses. [ 7 ]
Regenerative Rankine cycle. The regenerative Rankine cycle is so named because after emerging from the condenser (possibly as a subcooled liquid) the working fluid is heated by steam tapped from the hot portion of the cycle. On the diagram shown, the fluid at 2 is mixed with the fluid at 4 (both at the same pressure) to end up with the ...
In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .
T-s diagram for the ideal/real ORC. The working principle of the organic Rankine cycle is the same as that of the Rankine cycle: the working fluid is pumped to a boiler where it is evaporated, passed through an expansion device (turbine, [3] screw, [4] scroll, [5] or other expander), and then through a condenser heat exchanger where it is finally re-condensed.