Ads
related to: newton's 2nd law
Search results
Results From The WOW.Com Content Network
Newton's second law, in modern form, states that the time derivative of the momentum is the force: =. If the mass m {\displaystyle m} does not change with time, then the derivative acts only upon the velocity, and so the force equals the product of the mass and the time derivative of the velocity, which is the acceleration: [ 21 ] F = m d v d t ...
i.e. they take the form of Newton's second law applied to a single particle with the unit mass =.. Definition.The equations are called the equations of a Newtonian dynamical system in a flat multidimensional Euclidean space, which is called the configuration space of this system.
Traditionally, thermodynamics has recognized three fundamental laws, simply named by an ordinal identification, the first law, the second law, and the third law. [1] [2] [3] A more fundamental statement was later labelled as the zeroth law after the first three laws had been established.
The second law of thermodynamics may be expressed in many specific ways, [25] the most prominent classical statements [26] being the statement by Rudolf Clausius (1854), the statement by Lord Kelvin (1851), and the statement in axiomatic thermodynamics by Constantin Carathéodory (1909). These statements cast the law in general physical terms ...
In special relativity, Newton's second law does not hold in the form F = ma, but it does if it is expressed as F = d p d t {\displaystyle \mathbf {F} ={\frac {d\mathbf {p} }{dt}}} where p = γ( v ) m 0 v is the momentum as defined above and m 0 is the invariant mass .
The application of Newton's second law for variable mass allows impulse and momentum to be used as analysis tools for jet- or rocket-propelled vehicles. In the case of rockets, the impulse imparted can be normalized by unit of propellant expended, to create a performance parameter, specific impulse .
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
So long as the force acting on a particle is known, Newton's second law is sufficient to describe the motion of a particle. Once independent relations for each force acting on a particle are available, they can be substituted into Newton's second law to obtain an ordinary differential equation, which is called the equation of motion.