Ads
related to: positive definition math meaning dictionary free
Search results
Results From The WOW.Com Content Network
One can define positive-definite functions on any locally compact abelian topological group; Bochner's theorem extends to this context. Positive-definite functions on groups occur naturally in the representation theory of groups on Hilbert spaces (i.e. the theory of unitary representations).
In mathematics, positive definiteness is a property of any object to which a bilinear form or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular: Positive-definite bilinear form; Positive-definite function; Positive-definite function on a group; Positive-definite functional; Positive-definite kernel
3. Subfactorial: if n is a positive integer, !n is the number of derangements of a set of n elements, and is read as "the subfactorial of n". * Many different uses in mathematics; see Asterisk § Mathematics. | 1. Divisibility: if m and n are two integers, means that m divides n evenly. 2.
In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every (), , and , , where is the domain of .
In mathematics, the positive part of a real or extended real-valued function is defined by the formula + = ((),) = {() > Intuitively, the graph of f + {\displaystyle f^{+}} is obtained by taking the graph of f {\displaystyle f} , chopping off the part under the x -axis, and letting f + {\displaystyle f^{+}} take the value zero there.
One can also speak of "almost all" integers having a property to mean "all except finitely many", despite the integers not admitting a measure for which this agrees with the previous usage. For example, "almost all prime numbers are odd". There is a more complicated meaning for integers as well, discussed in the main article.
def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.
The plus sign (+) and the minus sign (−) are mathematical symbols used to denote positive and negative functions, respectively. In addition, + represents the operation of addition, which results in a sum, while − represents subtraction, resulting in a difference. [1]