Search results
Results From The WOW.Com Content Network
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
In graph theory, a branch of mathematics, the simplex graph κ(G) of an undirected graph G is itself a graph, with one node for each clique (a set of mutually adjacent vertices) in G. Two nodes of κ( G ) are linked by an edge whenever the corresponding two cliques differ in the presence or absence of a single vertex.
In an undirected simple graph of order n, the maximum degree of each vertex is n − 1 and the maximum size of the graph is n(n − 1) / 2 . The edges of an undirected simple graph permitting loops G {\displaystyle G} induce a symmetric homogeneous relation ∼ {\displaystyle \sim } on the vertices of G {\displaystyle G} that is called ...
In an undirected simple graph, an edge may be represented as the set of its vertices, and in a directed simple graph it may be represented as an ordered pair of its vertices. An edge that connects vertices x and y is sometimes written xy. edge cut A set of edge s whose removal disconnects the graph. A one-edge cut is called a bridge, isthmus ...
The graphs can be used together to determine the economic equilibrium (essentially, to solve an equation). Simple graph used for reading values: the bell-shaped normal or Gaussian probability distribution, from which, for example, the probability of a man's height being in a specified range can be derived, given data for the adult male population.
One of the most important uses of text in a graph is the title. A graph's title usually appears above the main graphic and provides a succinct description of what the data in the graph refers to. Dimensions in the data are often displayed on axes. If a horizontal and a vertical axis are used, they are usually referred to as the x-axis and y-axis.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).