Search results
Results From The WOW.Com Content Network
The use of a sequence of experiments, where the design of each may depend on the results of previous experiments, including the possible decision to stop experimenting, is within the scope of sequential analysis, a field that was pioneered [12] by Abraham Wald in the context of sequential tests of statistical hypotheses. [13]
The Design of Experiments is a 1935 book by the English statistician Ronald Fisher about the design of experiments and is considered a foundational work in experimental design. [ 2 ] [ 3 ] [ 4 ] Among other contributions, the book introduced the concept of the null hypothesis in the context of the lady tasting tea experiment. [ 5 ]
In the statistical theory of the design of experiments, blocking is the arranging of experimental units that are similar to one another in groups (blocks) based on one or more variables. These variables are chosen carefully to minimize the impact of their variability on the observed outcomes.
Experimental design is the design of all information-gathering exercises where variation is present, whether under the full control of the experimenter or an observational study. The experimenter may be interested in the effect of some intervention or treatment on the subjects in the design.
In statistics, specifically the analysis of data in the design of experiments, a DOE mean plot is a graphical tool used to analyze data from an experiment. In it, it demonstrates the relative importance of all the factors in an experiment with respect to a chosen location statistic, in this case the mean. Each factor is plotted and all mean ...
Gustav Elfving developed the optimal design of experiments, and so minimized surveyors' need for theodolite measurements (pictured), while trapped in his tent in storm-ridden Greenland. [ 1 ] In the design of experiments , optimal experimental designs (or optimum designs [ 2 ] ) are a class of experimental designs that are optimal with respect ...
Oscar Kempthorne (January 31, 1919 – November 15, 2000) was a British statistician and geneticist known for his research on randomization-analysis and the design of experiments, which had wide influence on research in agriculture, genetics, and other areas of science.
The results of that example may be used to simulate a fractional factorial experiment using a half-fraction of the original 2 4 = 16 run design. The table shows the 2 4-1 = 8 run half-fraction experiment design and the resulting filtration rate, extracted from the table for the full 16 run factorial experiment.