When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spectral radiance - Wikipedia

    en.wikipedia.org/wiki/Spectral_radiance

    For propagation of light in a vacuum, the definition of specific (radiative) intensity implicitly allows for the inverse square law of radiative propagation. [12] [14] The concept of specific (radiative) intensity of a source at the point P 1 presumes that the destination detector at the point P 2 has optical devices (telescopic lenses and so forth) that can resolve the details of the source ...

  3. Astronomical spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Astronomical_spectroscopy

    The Star-Spectroscope of the Lick Observatory in 1898. Designed by James Keeler and constructed by John Brashear.. Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and other celestial objects.

  4. Photometry (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Photometry_(astronomy)

    Absolute photometry is the measurement of the apparent brightness of an object on a standard photometric system; these measurements can be compared with other absolute photometric measurements obtained with different telescopes or instruments. Differential photometry is the measurement of the difference in brightness of two objects.

  5. Radiant intensity - Wikipedia

    en.wikipedia.org/wiki/Radiant_intensity

    Radiant intensity is used to characterize the emission of radiation by an antenna: [2], = (), where E e is the irradiance of the antenna;; r is the distance from the antenna.; Unlike power density, radiant intensity does not depend on distance: because radiant intensity is defined as the power through a solid angle, the decreasing power density over distance due to the inverse-square law is ...

  6. Spectral power distribution - Wikipedia

    en.wikipedia.org/wiki/Spectral_power_distribution

    Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).

  7. Radiance - Wikipedia

    en.wikipedia.org/wiki/Radiance

    The light at the image plane, however, fills a larger solid angle so the radiance comes out to be the same assuming there is no loss at the lens. Spectral radiance expresses radiance as a function of frequency or wavelength. Radiance is the integral of the spectral radiance over all frequencies or wavelengths.

  8. Luminosity - Wikipedia

    en.wikipedia.org/wiki/Luminosity

    A star like Deneb, for example, has a luminosity around 200,000 L ⊙, a spectral type of A2, and an effective temperature around 8,500 K, meaning it has a radius around 203 R ☉ (1.41 × 10 11 m). For comparison, the red supergiant Betelgeuse has a luminosity around 100,000 L ⊙ , a spectral type of M2, and a temperature around 3,500 K ...

  9. Jansky - Wikipedia

    en.wikipedia.org/wiki/Jansky

    The spectral flux density or monochromatic flux, S, of a source is the integral of the spectral radiance, B, over the source solid angle: = (,). The unit is named after pioneering US radio astronomer Karl Guthe Jansky and is defined as